MENU
您所在的位置: 首页» 创新院介绍» 科研团队及人员

固体氧化物电池团队——童晓峰

童晓峰

姓名:童晓峰

职称:讲师

院系:能源电力创新研究院

研究方向:

  1. 固体氧化物燃料电池/电解池技术基础与应用研究

  2. 先进陶瓷成型与制备工艺研究

联系方式:

电话:

邮箱:xiaofeng.tong@ncepu.edu.cn

地址:主楼D区1006

个人简介及主要研究成果

童晓峰,浙江衢州人。2016年毕业于中国科学院上海硅酸盐研究所,获材料学硕士学位;2020年毕业于丹麦科技大学能源系,获工学博士学位。主要开展固体氧化物燃料电池/电解池及相关测试分析与表征技术的基础与应用基础研究。在固体氧化物电解制氢方面,通过电化学阻抗谱和微结构三维重构技术系统地研究了电池长期运行稳定性,提出了电池电解衰减机理,开发了新型电极表面修饰方法,有效提升了电池稳定性,达到测试工况下世界最低衰减率。部分成果在第十三届欧洲固体氧化物燃料电池与电解池论坛获得Christian Friedrich Schönbein 最佳墙报奖。作为学术骨干成员,参加国家自然科学基金重大项目1项、国家自然科学基金重点基础研究发展计划1项、丹麦国家能源部和丹麦创新战略基金3项。迄今在Small,J. Mater. Chem. A,Chem. Eng. J., ACS Appl. Mater. Interfaces,J. Power Sources等SCI期刊上发表学术论文10余篇。

教学与人才培养情况:

1.教学课程:

丹麦科技大学曾参与两门课程的教学工作

课程教学助理,Fundamental Chemistry

课程教学助理,Energy Technologies

2.学生培养(含合作指导)

在读硕士:袁春宇,胡自坤

3.学生获得荣誉

主要科研项目情况:

(1) 国家自然科学基金委员会重大项目子课题,52090062,多能互补的协同转化与能势耦合机制,2021-012025-12450万元,在研,参与

(2) 丹麦国家能源部EUDP 64017-0011Efficient Power2Gas Combining SOEC and Biomass Gasification (EP2Gas)2017-092020-091500丹麦克朗,已结题,参与

(3) 丹麦创新战略基金4106-00006BSYNFUEL - Sustainable synthetic fuels from biomass gasification and electrolysis2015至2019,2800万丹麦克朗,已结题,参与

(4) 丹麦国家能源部ForskEL 2015-1-12276Towards Solid Oxide Electrolysis Plants in 20202015-082017-071500丹麦克朗,已结题,参与

(5) 国家自然科学基金委员会2012CB215400973 计划:碳基燃料固体氧化物燃料电池体系基础研究2012-01至2016-08,已结题,参与

主要获奖情况:

第十三届欧洲固体氧化物燃料电池与电解池论坛获得Christian Friedrich Schönbein 最佳墙报奖

代表性论著:

[1] Yang, Y.; Tong, X.; Hauch, A.; Sun, X.; Yang, Z.; Peng, S.; Chen, M. Study of solid oxide electrolysis cells operated in potentiostatic mode: Effect of operating temperature on durability. Chemical Engineering Journal, 2021, 417, 129260. (SCI)

[2] Tong, X.; Xu, Y.; Tripkovic, D.; Hendriksen, P. V.; Kiebach, W.; Chen, M. Promotion of oxygen reduction and evolution by applying a nanoengineered hybrid catalyst on cobalt free electrodes for solid oxide cells, J. Mater. Chem. A, 2020, doi.org/10.1039/D0TA02979C. (SCI)

[3] Tong, X.; Ovtar, S.; Brodersen, K.; Hendriksen, P. V.; Chen, M. Large-area solid oxide cells with La0.6Sr0.4CoO3-δ infiltrated oxygen electrodes for electricity generation and hydrogen production, J. Power Sources, 2020, 451, 227742. (SCI)

[4] Tong, X.; Hendriksen, P. V.; Hauch, A.; Sun, X.; Chen, M. An Up-scalable, Infiltration-Based Approach for Improving the Durability of Ni/YSZ Electrodes for Solid Oxide Cells, J. Electrochem. Soc., 2020, 167, 024519. (SCI)

[5] Khoshkalam, M., Tripković, Ð., Tong, X., Faghihi-Sani, M. A., Chen, M., Hendriksen, P. V.. Improving oxygen incorporation rate on (La0.6Sr0.4)0.98FeO3-δ via Pr2Ni1-xCuxO4+δ surface decoration. J. Power Sources, 2020, 457, 228035. (SCI)

[6] Trini, M.; Hauch, A.; Angelis, S. D.; Tong, X.; Hendriksen, P. V.; Chen, M. Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells, J. Power Sources, 2020, 450, 227599. (SCI)

[7] Khoshkalam, M.; Sani, M. A.; Tong, X.; Hendriksen, P. V.; Chen, M. Enhanced Activity of Pr6O11 and CuO Infiltrated Ce0.9Gd0.1O2 Based Composite Oxygen Electrodes, J. Electrochem. Soc., 2020, 167, 024505. (SCI)

[8] Tong, X.; Ovtar, S.; Brodersen, K.; Hendriksen, P. V.; Chen, M. A 4 x 4 cm2 Nanoengineered Solid Oxide Electrolysis Cell for Efficient and Durable Hydrogen Production. ACS Appl Mater Interfaces, 2019, 11 (29), 25996-26004. (SCI)

[9] Ovtar, S.; Tong, X.; Bentzen, J. J.; Thyden, K. T. S.; Simonsen, S. B.; Chen, M. Boosting the Performance and Durability of Ni/YSZ Cathode for Hydrogen Production at High Current Densities via Decoration with Nano-Sized Electrocatalysts. Nanoscale 2019, 11 (10), 4394-4406. (SCI)

[10] Tong, X.; Hendriksen, P. V.; Hauch, A.; Sun, X.; Chen, M. Development of Solid Oxide Electrolysis Cells for Hydrogen Production at High Current Densities. ECS Trans. 2019, 91(1), 2433-2442.

[11] Tong, X.; Luo, T.; Meng, X.; Wu, H.; Li, J.; Liu, X.; Ji, X.; Wang, J.; Chen, C.; Zhan, Z. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells. Small 2015, 11 (41), 5581-8. (SCI)

相关附件

TOP